规模化生产或为AI发展方向

   2018-06-18 科技日报发吧网640
核心提示:其实这些都是应用场景而非AI的核心,AI的核心支撑技术是围绕机器学习构建的技术框架。雷涛说。当前,人工智能在各个领域的发展呈
 “其实这些都是应用场景而非AI的核心,AI的核心支撑技术是围绕机器学习构建的技术框架。”雷涛说。

当前,人工智能在各个领域的发展呈不平衡态势,如无人驾驶、人脸识别及机器人等领域,因其算法与目的都很明确,又有媒体关注的推动,在资本与数据的聚焦之下容易找到最佳实践。但针对算法纷繁复杂、数据私有与云服务私有的商业智能领域,AI应用程度参差不齐。在雷涛看来,其实如打车软件、基因测序、互联网快递等才是AI实际帮助我们解决问题的日常场景。

雷涛表示,手机、汽车从诞生到大规模量产的历史表明,新技术的发展历程往往经历数十年乃至上百年,AI的量产也同样面临重重困难。据2017年《纽约时报》报道,一个刚毕业的AI工程师年薪达到了惊人的300000美元/年,而美国人的平均工资是81000美元/年。据腾讯研究院预测,到2020年,市场对AI应用的需求将增长300%。旺盛的需求,偏少的人才供给,导致AI人才成本高昂。

“这种情况下,只有通过升级大规模生产工具,才有望满足需求。”雷涛强调。举例来说,某股份制银行的APP背后,是该银行多达数千人的数据科学团队每年生产的600个机器学习模型。因此比起场景,应该更关注怎样高效率、低成本地批量化生产模型。“毕竟负担上千人的数据科学团队,对于大多数企业来说都非常有挑战。”雷涛表示。

5月19日,在全球人工智能大会上,Google提出的解决路径是供给规模化的AI工具。天云大数据同样也提出了解决问题的规模化AI工具,通过构建支持机器学习特性的PaaS化(平台即服务)AI平台MaximAI,成功减少对数据科学家的依赖。

“AI不是少数人的专利,AI模型的PaaS化、智能化成为突破AI产业化应用的关键。未来人工智能发展更应凸显规模化生产能力,让企业获取机器智能像读书一样简单。”雷涛说。
 
AI
举报收藏 0打赏 0评论 0
 
更多>同类新闻资讯
推荐图文
推荐新闻资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  积分购买  |  隐私政策  |  使用协议  |  版权隐私  |  sitemaps  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报